LYCEE ELAHD ELJADID ELFAOUAR

A.S. 2009~2010

DEVOIR DE CONTROLE N° I

Prof: BENALI.M

Classe: 4 M DUREE: 1 H

Exercice 1: (2 pts)

Soient les déclarations Pascal suivantes :

T : Array [1..50] of Real; C : Integer; A: Real; D : Boolean;

B: Char;

Dans la case de chacune des affectations suivantes écrites en Turbo Pascal mettre V si l'opération est permise et F sinon ?

Exercice 2:(4 pts)

Compléter le tableau suivant :

	Y := 'Ornateur';	X	Y	Z	E
1	X := Copy(Y, 3, 6);			-	-
2	DELETE (Y, 3,6);	-		-	-
3	Y := CONCAT(Y, 'di');	-		-	-
4	INSERT $(X,Y,5)$;		\\	-	-
5	Z := POS('di',Y);	- -			-
6	STR(100,X);		/ \ -	-	-
7	Y := CONCAT(X, '4/5');		<i>□</i> \	-	-
8	VAL(Y, Z, E);	\ -		Ž	

Exercice 3: (3 pts)

Soit la séquence des affectations suivante avec x, y, z sont trois entiers donnés :

- 1) $x \leftarrow 5$
- 2) y **<** 9
- 3) $x \leftarrow tronc(x + y)$
- 4) $z \leftarrow carré(x-y)$
- 5) x ← y
- 6) y ← racine carré (z)

Questions

- a) Quelles sont les valeurs finales de x, y et z (utiliser le tableau de trace des séquences)?
- **b)** Exécuter cette séquence pour x=2 et y=3?
- c) Quel est le rôle de cette séquence?

Exercice 4: (3 pts)

Valider les instructions Pascal suivantes, si l'instruction est fausse proposer une correction.

1) TYPE Matiere = ('math', 'anglais', 'français', 'informatique'); [] Vrai [] Faux

2) TYPE vect : Array ['a' . . 'z'] of caractères ; [] Vrai [] Faux

3) TYPE Largeur = 'A' . . 'F'; [] Vrai [] Faux

Problème (8 pts)

On désire écrire un programme « conversion » qui permet de lire un nombre binaire **B** formé de quatre chiffres puis de calculer et afficher le nombre décimale **D** correspondant.

NB:

- On va supposer que le nombre donné **B** est toujours valide (formé de quatre chiffres binaires 0 ou 1).
- L'affichage doit être fait sous la forme des exemples suivants :

Exemples:

- B = 1001
$$\rightarrow$$
 D = (1*8) + (0*4) + (0*2) + (1*1) \rightarrow D = 9.

On affiche alors : 1001 en binaire est égale à 9 en décimale.

- B = 1100
$$\rightarrow$$
 D = (1*8) + (1*4) + (0*2) + (0*1) \rightarrow D = 12.

On affiche alors : 1 100 en binaire est égale à 12 en décimale.

- B =
$$0011 \rightarrow D = (0*8) + (0*4) + (1*2) + (1*1) \rightarrow D = 3$$
.

On affiche alors: 0011 en binaire est égale à 3 en décimale.

- B = 1111
$$\rightarrow$$
 D = (1*8) + (1*4) + (1*2) + (1*1) \rightarrow D = 15.

On affiche alors: 1111 en binaire est égale à 15 en décimale.

- 1) Analyser ce problème.
- 2) En déduire l'algorithme correspondant.

